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Color diffusion in a classical fluid composed of two species differing only by 
color is intimately connected with the asymptotic behavior of trajectories of test 
particles in the equilibrium system. We investigate here such behavior in a 
one-dimensional system of "hard" points with density p and velocities _ 1. 
Colliding particles reflect each other with probability p and pass through each 
other with probability 1 - p. We show that for p > 0 the appropriately scaled 
trajectories of n particles converge to p- lb( t )  + (1 -P)(OP)-lbj(t) , j  = 1 . . . . .  n. 
The b(t),bj(t)  are standard, independent Brownian motions. The common 
presence of b(t) means that motions are not independent and hence that the 
macroscopic state of the colored system is not in local equilibrium with respect 
to color. 

KEY WORDS: Self-diffusion; color profile; stochastic collisions; hydrody- 
namical limit; local equilibrium. 

1. INTRODUCTION 

In Ref. 1 we investigated the nonequilibrium phenomenon of self-diffusion 
in classical systems. We did this by studying the diffusion of the color 
profile of a binary mixture of black and white particles. Disregarding color 
the particles were mechanically identical and the system was in thermal 
equilibriu m. Our main conclusions were the following: (1) If the motion of 
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a marked particle (test particle) in the infinitely extended particle system in 
thermal equilibrium looks, on a "macroscopic scale," like Brownian mo- 
tion, then time-dependent and steady state self-diffusion is governed on 
that scale by the diffusion equation. The diffusion coefficient, computed 
microscopically either through the steady state current or by the Einstein 
relation, coincide. (2) If in addition an arbitrary (finite) number of test 
particles move asymptotically independently, then the system is locally in 
equilibrium with respect to colors, i.e., locally particles are colored indepen- 
dently and the relative fraction of particles with a given color is determined 
through the diffusion equation. 

The purpose of this paper is to investigate a model which is simple 
enough to allow for an analysis of the asymptotic motion of test particles. 
This is a system of hard rods moving in one dimension. It is known (2-4) 
that the properly scaled motion of a test particle in this system does behave 
like Brownian motion. It is also obvious that test particles never move 
independently, e.g., two initially neighboring test particles stay neighbors 
forever. Thus the first but not the second condition is satisfied. Starting 
with a state in which all particles to the left of the origin are painted black 
and the ones to the right are painted white, the time evolved state will also 
have a sharp line of demarcation between the two colors. The location of 
this line will behave, on the macroscopic scale, like Brownian motion and 
the average color density will therefore satisfy the diffusion equation. 
Locally, however, particles will be either all black or all white--which is 
very different from the local equilibrium state expected in real systems. To 
circumvent this problem we modify the dynamics of this system by stipulat- 
ing that at a collision the particles have a probability 1 - p to pass through 
each other and a probability p to be specularly reflected: p < 1 permits 
intermingling of initially separated colors, while p = 0 corresponds to ideal 
gas dynamics in which there is no diffusion. 

There is little lost by letting the diameter of the hard rods shrink to 
zero--and we shall do so. We shall also assume, and this is a major 
simplification, that the velocity distribution of the particles is h(v) 
= �89 + 1) + i~(v - 1)], i.e., the speed of the particles is one. [Recall that 
any h (v) is invariant under our dynamics whatever p is.] With this choice of 
h (v) the motion of a single test particle is Markovian and governed by the 
linear Boltzmann equation as forward equation. (2) Standard results prove 
then convergence to Brownian motion for p v ~ 0. The motion of several test 
particles is not Markovian because of time-delayed interactions transferred 
by the fluid particles. Asymptotically the joint motion of several test 
particles is diffusive. However, even when p < 1 they do not move indepen- 
dently. The effects on the test particles of the random initial positions of the 
fluid particles is seen approximately simultaneously by all test particles. 
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This constitutes a common noise source for all test particles and prevents 
independence. It is the only randomness present when p = 1. The random- 
ness due to the collisions, when p < 1, is approximately independent. 

Since several test particles do not move independently, the system 
containing a nonuniform color density will on a macroscopic scale be 
locally in a nondegenerate mixture of equilibrium states. The usual hypoth- 
esis of local equilibrium is violated therefore even for p < 1, although not as 
badly or obviously as for p = 1. We expect "better mixing" for similar 
models in higher dimensions. 

In Section 2 we define the model. In Section 3 we prove diffusive 
behavior of several test particles. This result is then used to study the global 
(Section 5) and local structure (Section 6) of the color density. In Section 4 
we prove that the only time invariant states are the one where particles are 
colored independently. Section 7 contains some concluding remarks about 
the extension of these results to more realistic systems. 

2. T H E  M O D E L  

We consider a system of point particles on the line. A particle has 
position q ~ R, velocity v ~ { -  1, 1}, and color o E {0, 1}. 0 stands for 
white and 1 for black. 

The phase space ~2 of the infinite system of colored particles is the 
space of sequences {qj,vj,oj [j E Z )  modulo permutations, with qj E R, 
vj ~ { - 1, 1}, oj E (0, 1). Let ~2 c = {0, 1} z be the space of color sequences 
and ~2p be the space of particle configurations, i.e., of sequences {qj,vj ]j 
E Z} modulo permutations. We use the shorthand xj = (qj,vj), x = {xj IJ 

Z} and o = {~.[j ~ Z}.  
We consider states of the system, where the particles, with color 

disregarded, are in thermal equilibrium. Let/z be the Poisson measure on ap 
with constant density O and independent velocities taking values -T-1 with 
probability 1/2. For/~ - a.a. x E f~p let P ( d o l x )  be a probability measure 
on f~c. P(da[ x) is assumed to depend measurably on x. Given o ~ ac we 
adopt the convention that a 0 is the color of the first particle to the right of 
the origin and that ~. is the color of the j th  particle following their natural 
order. Then we admit as states of the system probability measures P on f~ 
such that 

t'(~,~) = e ( d o  l x ) #(dx)  (2.1) 

Conversely, a probability measure on f~ such that when integrated over 
colors results in the Poisson measure/ t  on ~p is of the form (2.1). P(do] x) 
is the color distribution given the particle configuration x. 

We assume the following dynamics. Particles move freely up to a 
collision. At a collision two particles with the same color pass through each 



110 Kipnis et al. 

other. (Since the particles have zero diameter this gives the same effect as 
reflection.) Two particles with different color specularly reflect each other 
with probability p and pass through each other with probability 1 -  p, 
0 ~ < p < l .  

Equivalently, all particles move freely, i.e., qj(t) = qj + vjt, vj(t) = vj, 
j E Z. At the coincidence of two particles they exchange their color with 
probability p and they retain their color with probability 1 - p .  The case 
p = 0 corresponds to no interaction and the case p = 1 to hard rods of zero 
length. 

For given particle configuration x E s and color sequence o E s let 
Kt(do'ltr,  x ) be the probability measure on s corresponding to the color 
distribution at time t obtained from the configuration o~ = (o, x) under the 
dynamics just described. By inspection Kt(do ' lo ,  x ) exists for / ~ - a . a .  
x ~ s and all o ~ s t E R. If the initial (t = 0) measure is given by (2.1) 
then the time-evolved measure Pt at time t is 

= f [ g,(do l o',x)e(do' ! x) ] dx) (2.2) 

which is still the form (2.1). 

3. A S Y M P T O T I C  DYNAMICS OF TEST PARTICLES 

Following Ref. 1 we analyze the asymptotic motion of test particles in 
the fluid. For our model the n test particle process is defined in the fol- 
lowing way. Configurations of the fluid are given by x E s The Poisson 
measure/~ describes the initial state of the fluid. One picks n fluid particles 
at positions (ql, �9 �9 �9 qn) with velocities (Vl . . . . .  v,) as test particles. At the 
coincidence of two fluid particles they pass through each other. At the 
coincidence of either a fluid and a test particle or two test particles they 
pass through each other with probability (1 - p) and they specularly reflect 
each other with probability p. Let (ql(t) . . . . .  q~(t)) be the positions of the 
n test particles at time t considered as random variables on (s They 
still depend on (ql ,v l  . . . . .  q,,v~). (ql(t) . . . . .  q~(t)) defines a stochastic 
process with state space R ~ and with continuous sample paths. 

The scaled test particle process is defined by 

qf ( t )  = ~qj(e-2t) (3.1) 

j = 1 . . . . .  n, c > 0. Here qj(s) is the position at time s of the j th  test 
particle with scaled initial conditions 

qA0) = ,- qj + qj 

vA0 ) = vj 

where qj, q), and vj are independent of c. 



Self-Diffusion for Particles with Stochastic Collisions in One Dimension 111 

T h e o r e m  1. Let b(t ) ,b l ( t  ) . . . . .  b,(t)  be standard independent 
Brownian motions. Then fo rp  =~ 0 

(q~(t) . . . . .  q,~(t)) 

(ql + (1 - p ) ( p p ) - l b , ( t )  + p - lb ( t )  . . . . .  

q, + (1 - p ) ( p p ) - l b n ( t  ) + p -  lb(t)) (3.2) 

as e --> 0 in the sense of weak convergence of thepath  measures on C([0, oo), 
R ' ) .  In particular, the limit is independent of (q'l . . . .  , q~) and (v l, 

� 9  , v , ) .  

For n = 1 the proof is standard, since the velocity of the test particle, 
vl(t ), is a Markov jump process on { - 1, 1) with jump ratepp from v to - v  
and since ql(t) = ql + ftods v(s). 

At first glance the nonindependence of several test particles may look 
surprising. For an intuitive understanding let us consider only two test 
particles. Assume that initially the fluid particles are regularly spaced and 
have velocity 1 to the left of the test particles and velocity - 1 to the right 
of the test particles. Then the two test particles perform a random walk on 
a regular lattice where the only dependence comes from times when their 
positions coincide. For the scaling (3.1) such an interaction becomes 
negligible and the test particles move independently as (bl(t),b2(t)). In 
actual fact the fluid is Poisson distributed, which means that the lattice is 
randomly distorted. Typically the two test particles are at a distance of the 
order e -1 apart. Since the fluid is noninteracting a distortion travels 
undisturbed in a time of the order e-1 from one test particle to the other. 
On a time scale e-2 this is instantaneous and the two test particles see an 
identical random distortion almost simultaneously. This phenomenon is the 
origin of b(t); see also comments in Section 7. 

Remark.  As already noted this initial randomness is the only one 
present for p = 1, the case considered in Ref. 2. In that case, the conver- 
gence to Brownian motion is proven for a general even velocity distribution 
h(v), with the diffusion coefficient given by D = o-lf=_~lvlh(v)dv. Our 
result for p < 1 presumably also carries over to the general h(v) but we 
have not investigated this in detail. It may also be worth noting here that 
for the case p = 1 with an initial non-Poisson (hence also nonstationary) 
spatial distribution of the positions of the fluid particles ~ ' ( t )  does not 
converge to Brownian motion. (3) 

Proof. To keep the proof transparent, we consider only the case of 
two test particles�9 The convergence proof for several test particles follows 
the same lines. 
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Test particle one starts at ql = 0 and test particle two at q2 = q > 0. To 
simplify notation we assume that initially there are no fluid particles in the 
interval [0, q] and that the initial velocities are vl = 1, v2 = - 1. Notice that 
since the speed is one, all particles to the left of 0 with velocity - 1 and all 
particles to the right of q with velocity 1 will never interact with the test 
particles and may therefore be ignored. In addition, if we disregard label- 
ing, the system evolves freely. Hence the two-dimensional space-time 
diagram with gives the position at time t of all relevant particles forms a 
distorted lattice tilted at 45 ~ relative to the coordinate axis (draw the 
picture!). The distortion originates in the random initial positions of the 
fluid particles. In order to keep track of this distortion we introduce a 
fictitious particle with label zero. It starts at 0 with velocity 1 and it reverses 
its velocity at each collision with another particle (therefore now and then 
coiniciding with one of the two test particles). 

To a given configuration of particles we associate a new configuration 
where all particles with velocity pointing away from the test particles are 
suppressed and where the remaining particles are placed at equal distance 
of length two. To the original trajectory qi(t) of the ith test particle we 
associate a trajectory yi( t )  on the regular lattice with the same rules of 
interaction as before (i = 0, 1, 2). Then clearly yo(t)  oscillates between 0 and 
1, while qo(t) diffuses. The (y l ( t ) ,  yz(t)) perform an interacting random 
walk which will be shown (Lemma A) to approach two independent 
Brownian motions. We will now show that (r  is well 
approximated by (r162 2pt) + cq0(c- at), r - zOO + cq0(E- 2t)), 
which is the desired result. 

With this in mind we define the following quantities: Let T~, 
T ~ , . . . ,  T~ . . . .  be the successive instants of collisions for the test particle 
i. Call v( . . . . .  v~ . . . .  velocity of this particle immediately after T~ and 
define .vi(n ) inductively by yl(0) = 0 = y0(0), y 2 ( 0 )  = 2, yi(n q- 1) = yi (n)  + 
v i ,  n = O, 1 . . . . .  i = O, 1, 2. y i ( t )  for all t >/0 is defined by linear interpola- 
tion. It follows from the construction that v~ is a discrete Markov chain 
with state space ( - 1, 1) and transition matrix Q(v'lv) = (1 -p)'~v, + 
p ( 1 -  8vv, ) for i =  1,2 and Q0(v'l v ) -  ( 1 -  8v~,) for i =  0. Furthermore 
((yl(n), v~), (y2(n),  v2)) vv' is a Markov chain, where the transition matrix for 
v~ and v~ is O ( v ' i v )  in the casey~(n) v~ y2(n) and O(v',u'lv, u) = (1 - 8~u) 
(1 - 8v,u,)[(1 - p)8~,~,Suu, + pS~v,8~u, ] in the case y l (n )  = y2(n). 

Let U ~ = T ~ - T ~ _  1 with T~=0 .  Let B 0 = q  and denote by B1, 
. . . ,  B k . . . .  the successive spacings between the particles located to the 

right of q, and by A 1 . . . . .  A k . . .  those to the left of 0. Note that 
(A 1, A2 . . . . .  B1, B2 . . . .  ) are independent and are all exponentially distrib- 
uted with mean 2/p. The U i for i = 0, 1,2 are related to the A's and B's by 
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2 U{ = B 0 and 

2U,~+ 1 = B(n+k)/2 (3.3) 

i fy i (n  ) = k and v / = 1, whereas if v / = - 1: 

2U/+1 = AE(n_k)/21+ 1 (3.4) 

Hence it follows that (U{, U~ . . . .  ) are independent although (U2) and 
(Uff) are not jointly independent, since they are built out of the same A's 
and B's. 

Let Nt i be the number of collisions of test particle i up to time t. We 
can now reconstruct qi(t) from (yi(n), v i) and the A's and B's by (3.3), 
(3.4). If N / =  ki, then 

ki ( hi ) 
q,(t)= q,= E v ' t -  E v/ (3.5) 

p = l  p = l  

Since for a given i the T~ form a Poisson process with intensity p, 
N~-~t~Oc-2t. Therefore for i = 1, 2 we make the following decomposition: 

c I qi( ,-2t)  - q0(c-2t)] 

[O ~ - 2t] Ion: - 2t] 

=c X v;_,u;-c X q_ uo 
p = l  p = l  

=C E 1) ip-- 1 U/--~ l)ki C-2I -- E U; + cqi 
p=[pc2t]+ 1 p= 1 

ko ) - c  ~ v o •o_  CV~o c - 2 t _  ~,, (3.6) p- l '@ 
p=[pc-2t]+ 1 p= 1 

where N / =  k i, i = 0, 1, 2. Here [ ] denotes the integer part and the summa- 
tion k ~p=m is understood algebraically, i.e., with negative sign if k < m. For 
i = 1, 2 we set 

t~ -2t m -2t 

z/'(t) = c ~ V/_lU/~-. E E 4--1UO (3.7) 
p = l  p = l  

for integer values of pc-2t and define zi'(t ) for all t >/0 by linear interpola- 
tion. Then for any 8 > 0 

f l imP_ sup N I q [ (  s ) - q ~ ( s ) - z [ ( s ) l l >  8 - -0  (3.8) 
~--~0 ~O<.s<ti=l 
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Clearly 

e sup ~ [qi'(s) - q ~ ( s )  - zi(s) l />  8 
O<s<<.t i = l  

2 

< ~ e(Iu~-2s - o,-a~l ~ X , - ' vT ,  0 < ~ <. t) 
i=0 

+ 2 ~ - ] P  sup ~ v i 
i=0 \0<S<tlk_o,-21<x,-i ~" p=p'-:~ e-lU/, >1 ~ (3.9) 

The first term vanishes as O ~ 0 ,  since N[ is a Poisson process 
~-~[pe-2tl i Tri c2~;= 1 vp_ l t;p tends in distribution to Brownian motion as e-~ 0. There- 

fore the second term in (3.9) vanishes for arbitrary 8. 
Since [Joe = �89 1 and U~ 1 = �89 e, (3.7) for integer values of Oe-2t 

can be rewritten as 

(l /2)yi(Oe~ zt) 

z[(t) = ~ ~, l (A�89 + B�89 (3.10) 
p = I  

where the sum is again in the algebraic sense, zf(t) is the sum of �89 
independent random variables with mean 2c/0. ey~(c-2t) tends to Brownian 
motion as e ~ 0 .  As before, we break the sum (3.10) into a term with 
yi( e-2t)~c - l  and a remainder. The same argument used before shows then 
that any 6 > 0 

( limP. sup 2 eYi(O e-2t) 
r ~ O < s < t i = l l  P ) 8 = 0  (3.11) 

q~(t) and (cyl(r Ey2(~-2t)) are independent, q~(t) tends in distribution to 
p-lb(t)  as c ~ 0 .  (~y](~-2t),cy2(c-2t)) tends to two independent Brownian 
motions with variance [(1 - p)/p]t as ~ ~ 0, c.f. Lemma A in the Appendix. 
This, together with (3.8) and (3.11), concludes the proof of the theorem. [] 

4. TIME INVARIANT MEASURES 

Let Bw(da ) denote the independent (Bernoulli) measure on ~c with the 
probability that oj = 1, B w (9 --- 1), equal to w for all j .  

Theorem 2. Let P(&o) be a measure on ~2 which is of the form (2.1) 
and which is extremal time invariant. Then for p ~ 0, 1 

P(do~) = B~(do) tt(ax) (4.1) 

for some w, 0 < w <1 .  
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Proof. 
obtained through free motion. Let P be an invariant measure. Then 

e(do~) = P(do lx )  t~(dx) = et(&o) = e , (do lx )  #(dx) 

which implies 

e , (do l x  ) = P ( d o l x  ) ~ - a.s. (4.3) 

On the other hand 

Pt(dolx)  = f Kt (do lo ' , x_ t )P(do ' lx_ , )  (4.4) 

We show that (4.3) and (4.4) imply the "exchangeability" of e(dol x). 
For i =~ j 

e ( o ,  = 0, ~ = 11 x )  - e ( o ,  = 1, o = 0 I x )  

=f[K,(o,=O,,~= 11 o',x_,)- K ( o , =  1, o) = O]o ' ,x  ,)] 

x P(da'lx_,) (4.5) 

To compute (4.5) one places a test particle at site i and a test particle at site 
j of the configuration x. The test particles move backward in time. Their 
final sites on the configuration x_t  determine then their color through o'. 
At points of coincidence of the two test particles their roles may be 
interchanged. Therefore, since with probability one the two test particles 
meet infinitely often during the time interval ( - 0 %  0), the right-hand Side 
of (4.5) has to vanish as t ~  ~ .  Repeating the argument for any finite 
number of points we conclude that e(dol x) is exchangeable and therefore 
by De Finetti's theorem 

e(dol  x ) = f ,,(aw I x)Bw(do) (4.6) 

for some probability measure p(dwlx). Since the Bernoulli measure is 
invariant for the stochastic kernel Kt(dolo' , x), (4.3) and the uniqueness of 
the decomposition imply 

For x E s let x t = ( qj + vjt, vj lj E Z}  be the configuration 

(4.2) 

,,(dw Ix) = ~(dw Ix , )  (4.7) 

Since i~(dx) is ergodic for the free evolution, ~,(dwlx) has to be indepen- 
dent of x. By extremality ~,(dw I x) has to be concentrated on a single point. 

For p = 0 and p = 1 there exist invariant measures other than (4.1). 
II 
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5, TIME-DEPENDENT AND STEADY STATES 
IN THE HYDRODYNAMIC LIMIT 

We consider time-dependent phenomena for 

Kipnis et ai. 

a particular class of 
initial states. Let g : R --> [0, 1] be a measurable function. Let Pg(do [ x) be 
the product measure on f~c such that 

f ~(oj = I I x )  = g(qj) (5.1) 

where x is labeled in its natural order such that q0 is the position of the first 
particle to the right of the origin. We assume that the initial measure is 

e ( d ~ )  = l"g(dol x ) ~(ax)  (5.2) 

g is then the profile of black particles. We denote by P,(qa, vl, 01 . . . . .  qn, 
vn, on, t) the correlation functions of the time evolved measure at time t. A 
slowly varying color profile is assumed by setting 

g,(q) = g(eq) (5.3) 

Then the scaled correlation functions are defined by 

PnC(qD "OI' O1 . . . . .  qn ,'On ,(In , t )  

= p , ( e - ' q l , v l , o l , . . . ,  e- lqn, 'O, ,on,e-2t)  (5.4) 

On(ql,'Ol,01 . . . . .  q. ,Vn ,0.  ,0) = f l  j = l  3~  _ oj) _ (1 - 2oj)g(q~)]  (5.5) 

The nth correlation function is related to the n test particle process by 

P~(ql, vl, ol, . . . , qn ,v.an ,t) 

(o ) =E(q l_v ,  . . . . .  q,,_,) f l  ~ [ ( 1 - - ~ ) - - ( 1 - - 2 5 ) g ( c l r  ] (5.6) 
j = l  

Here (q~(t) . . . . .  q,~(t)) is the scaled n test particle process as defined in 
Section 3 and E~... ) denotes expectation conditioned that the test particles 
start at ( e - ~ q l , - v l  . . . . .  e - lqn , -vn) .  As an immediate consequence of 
Theorem 1 

�9 s 

hm 0~ (ql, vl, oi . . . . .  q~ ,'On ,on ,t) 
r 

n 
= f d x  1 exp( - xZ/2Dt)  I-I 

(2~r Dt) 1/2 j=  1 

{ f  1 exp[ ( x +  - y ) 2 7 2 D  • dy (2rrD,t),/2 - qj 't] 

• �89 } 
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pointwise, D = l / o ,  D '  = (1/0)(1 - p ) / p .  On a macroscopic scale the color 
random fields are a Gaussian superposition of deterministic fields which 
are obtained from the solution of the diffusion equation. 

For the steady state we impose boundary conditions on the colors at 
the points - L  and L. (1) Particles to the left of - L  are black and all 
particles to the right of L are white. If a particle exits [ - L, L] at - L, then 
its color is changed to (or remains) black, and if a particle exits [ - L ,  L] at 
L, then its color is changed to (or remains) white. Under these boundary 
conditions there is a unique stationary measure PL(do~). Let On(" ;L)  be its 
nth correlation functions. Then the scaled correlation functions are 

One(ql, O1 . . . . .  qn ,On ,~ = Pn(e-lqDoDo1 . . . . .  f'-lqn ,'l)n ,On'~ E-1L) 

(5.8) 
They are related to the scaled n test particle process by 

n E 

<(ql, ol, O, . . . . .  q ~ 1 7 6  = [ ( 0 1 2 ) ]  e q,_v . . . . . .  qo.-v   

(qj(t) exits [ - L,L]  first at (1 - 2oj)L,j  = 1 . . . . .  n) (5.9) 

Let db be the path measure on C(R)  of the Weiner process with 
variance 0 -1. Let t ~ y ( t )  be a continuous function such that y (0 )=  0. 
Then P(q,7) is defined as the probability that Brownian motion which 
starts at q and has variance ( 1 - p ) t / O p  exits f - L +  7(t) ,L + V(t)] at 
- L + y(t). As a consequence of Theorem 1 and (5.9), 

lim P~(ql, vl, ol . . . .  , q, ,  v,,, o,; L) 
~- - - )0  

" 1 

As p ~ 1, D ' ~  O. In this case one sees at each macroscopic point either 
only black or only white particles. Their relative weight is such that on the 
average the diffusion equation is valid and that on the average the steady 
state color profile is linear. 

We remark that, since the motion of a single test particle is Markovian, 
the first correlation function can be computed explicitly. In the time- 
dependent case it satisfies 

-~7 Pl(q'v' 1, t) = - v  0-~ Pl(q'o' 1, t) + 2/901 (q, - v ,  1, t) 

- p o , ( q ,  - v, 1, t) (5.11) 

with initial conditions &(q, o, 1, O) = �89 og(q). Equation (5.11) e~n be solved 
in terms of Bessel functions. (4~ 
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In the steady state (5.11) has to be satisfied with boundary conditions 

PL,1(- L,  1, 1) = • OL,I(L, -- 1, 1) = 0 (5 .1 2 )  

The solution is 1( 2,) 
PL, l(q,l,1)=-~P 1 - ( q + L )  l + 4 p L  

(5.13) 
1 2p 

PLA(q, 1, 1) = ~ p(L - q) 1 + 4pL 

The steady state current is 

1 1 
JL = ~ P 1 + 4eL (5.14) 

The average color profile is linear, although with a jump of size 1/L at the 
boundary. This is a particularly simple form of the boundary layer of size 
1 / L  to be expected in general. The steady state current is of the order 1 / L  
except for p = 0 when it is independent of L as it should be for an ideal 
gas.(5) 

. LOCAL EQUILIBRIUM STATES 

The local s t a t e  P(q,t) of the system at the macroscopic point (q, t) may 
be defined through its correlation functions 

p;(q,,v~,o, . . . . .  q. ,vo, o. L q, t) 

=p.(e-lq+ ql, vl, o , , . . . , e - ' q+  qn,V.,o.,e-2t) (6.1) 

From Theorem 1 and (5.6) it follows that in the hydrodynamic limit 

hmpg (ql, Vl, 01, �9 �9 �9 , q . ,  v . ,  o.) 
r  

= fax  1 e x p ( -  x2/Dt) 
(2qrDt)l/2 

X f i  { fdy  1 e x p [ - ( x  + q-y)2/2D't] 
y= 1 (2~D't)  1/2 

• ~O[(1 - a j ) -  (1 - 2 o j ) g ( y ) ]  (6.2) 

Therefore the local state is a mixture of equilibrium states, 

= f .(dw I q, t)Bw(d~ (dx) (6.3) 

Similarly, in the steady state the local state Pq at the macroscopic point 
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q may be defined through its correlation functions 

o~(ql, vl, op . . . .  q, ,vn, an I q; L) 

= p , , ( , - l q + q l , v l , o , , . . . , , - l q + q , , V n , O n ; e - l L  ) (6.4) 

From Theorem 1 and (5.9) it follows that in the hydrodynamic limit 

limp,~(ql, vl, Ol . . . .  , qn ,v, ,on) 
e~-)O 

n 
1 = f d b ( y )  I I  { - ~ p [ ( 1 - ~ ) - ( l - 2 o j ) P ( q , , ) ] )  (6.5) 

j = l  

Again, the local state is a mixture of equilibrium states, 

-- f v(dw [ q)Bw(do ) I~(dx) (6.6) eq(d ) 

As p--)1 the mixtures become degenerate, in the sense that v(dwlq, t) and 
g(dw [ q) are concentrated on 0 and 1. 

7. C O N C L U D I N G  R E M A R K S  

(i) Our analysis has been confined to the case h(v)= �89  1)+ 
8(v + 1)]. For a general velocity distribution the space-time diagram has a 
more complicated geometry. If one conditions on the initial configuration 
of particles, one obtains a random walk (0 < p < 1) on a kind of random 
network. We expect a qualitative similar behavior as for speed one. This is 
in fact what one finds for p = 1 (2) 

(ii) We note in (5.7) that for p ~  oo, p ~ O, pp = const the limiting 
correlation functions factorize which implies local equilibrium. This corre- 
sponds to the one'dimensional Boltzmann-Grad limit. Using the same 
technique as in Ref. 7, one can prove, for a general velocity distribution, 
that in this limit the motion of a single test particle is governed by the 
one-dimensional linear Boltzmann equation and that several test particles 
move independently. 

(iii) A two-dimensional version of our model consists of replicas of 
the one-dimensional system arranged in parallel lines. Particles are allowed 
to jump with a certain rate between neighboring lines. In the case of N lines 
it has been shown (8) that the common diffusion constant is proportional to 
1/N. This suggests that for two and more dimensions the common noise 
source becomes incoherent and several test particles move independently in 
the scaling limit. 

(iv) A mechanical model which comes close to our model is a 
v-dimensional channel with "matchsticks" (or rectangles) oriented perpen- 
dicular to the boundary. The sticks have a velocity with an angle of 45 ~ 
relative to the boundary. The ratio of the stick length and the width of the 
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channel corresponds to 1 - t7.  However, in this mechanical model reflec- 
tions and transmissions are correlated. We still would expect a behavior 
comparable to the one we found for stochastic uncorrelated collisions. If 
one considers hard spheres in a channel then the collisions between the 
spheres randomize the velocity and the common noise source is, at least 
partially, suppressed. For this model local equilibrium seems to be a 
possibility. 

We certainly expect that in the full three-dimensional system several 
test particles will diffuse independently asymptotically and the system 
establishes local equilibrium for the colors. For hard disks in two dimen- 
sions even a single test particle may not diffuse due to the long time tails. O) 

(v) Typical stochastic particle models are interacting Brownian parti- 
cles and stochastic lattice gases with Kawasaki dynamics. For these models 
it has been shown recently (~~ that if either d >/2 or d = 1 but inter- 
change in ordering is allowed (i.e., 0 < p < 1), a single test particle tends to 
Brownian motion and several test particles become independent in the 
scaling limit. 
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APPENDIX 

We still have to prove that the process (r tends to 
two independent Brownian motions as c ~ 0. This discrete time problem is 
essentially equivalent to the corresponding one continuous in time. Since 
the proof is more easily written for continuous time, we choose this setup 
here. 

The proof consists of a standard martingale argument together with an 
additional trick as used in Ref. 3. We therefore indicate only the modifica- 
tions in the proof of the theorem in Ref. 3 needed here. 

Let (x(t),v(t),y(t),w(t)) be a Markov jump process on (Z • ( - 1 ,  
1))2 with generator 

(Lf)(x,v, y,w) 

= ~ Q(vlv ' )Q(wlw' )[ f (x+v,v ' ,y+w,w') - f (x ,v ,y ,w) l  
~ , W ' =  W- 1 

if x + v ~ y  + w, and 

(Lf)(x,v, y,w) 

= ~ Q(v, wlv ' ,w ' )[ f (x+v,v ' ,y+w,w' ) - f (x ,v ,y ,w)]  
V' ,w '  ~ ~- 1 

(A.1) 
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if x +  v = y +  w, where  Q ( v l v ' ) = ( 1  -p )6vv ,+p(1  - 8vv,) a n d  Q ( v , w [  
v',  w') = (1 - 8vw)(1 - 6v,w,)[(1 - p)6~,Sww, + p6vw,Sv,w) with p ~ 0, 1. N o t e  
tha t  the subset  {x @ y  or  v v ~ w) is closed.  

Lemma A. The  process  ( e x ( e - 2 t ) , e y ( E - 2 t ) )  tends  in d i s t r ibu t ion  to 
two i n d e p e n d e n t  Brownian  mot ions  with covar iance  [(1 - p / p ) ] t  as e ~ 0 .  

Proo f ,  Let  L '  be  the genera to r  of the scaled process.  Let  

v 

J 

(A.2) 

Then  expand ing  to th i rd  o rde r  in ~ one  ob ta ins  for  ]xy[ v a e 

y , w )  l - p  
- + - -  f ( x ,  y) + O(e) (A.3) 

2p Ox 2 3y 2 

W e  would  be  f in ished were it no t  for the te rm close to the d iagonal .  
No t i ce  tha t  the very choice of the func t ion  q~ e l iminates  the te rm in 1 / e  of 
the Tay lo r  expans ion  and  leaves us with a b o u n d e d  term which  differs f rom 
zero only on  the set ( x  = y ) .  W e  now argue as in the theorem of Ref.  3, to 
conc lude  that,  since the  t ime spent  in this subset  is of o rde r  e -1, the 
con t r ibu t ion  of this te rm is negligible in the  limit.  
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